If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+16a-15=0
a = 7; b = 16; c = -15;
Δ = b2-4ac
Δ = 162-4·7·(-15)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-26}{2*7}=\frac{-42}{14} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+26}{2*7}=\frac{10}{14} =5/7 $
| 16x+2=x+17 | | 3n/5+7/10=11n-7 | | -11x+x=9+3x | | 9r+10=9r+10 | | 5-2(x+2)=10 | | 9=21a | | 5/8m-3/8=1/2m+7/8= | | 5(n+2)=(3÷5)(5+10n) | | a÷2-5=0 | | 7x-3x=6x-60+15-15x | | 4x2+-12x+14=0 | | 2.1+10m=8.42 | | -1/5(t+6)-2=3t+2/3 | | x+15-x-6=9 | | 2(-8-3r)=2-3r | | (1+w)(5w+3)=0 | | 8c-(-11)=27 | | 9^(-x+1)=27 | | 12–3x–x=8 | | 4+8-5x2=10 | | 6r-21=33 | | 7-3x=-4x+12 | | 6x-12+2=8x-6 | | 16*(b-5)=b+70 | | 1=124°2=(2x+4)° | | 17-8+x=8+9-2 | | 6=1/2b4 | | 4(6+2x)-5=3(3x+7) | | x−1.2=3 | | 8x-180=6x+160 | | 6-2r=12=3r-5(r-2) | | x-462=548 |